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Abstract

Maximum likelihood estimation for exponential families depends exclusively on the first two moments of the data.

Recognizing this, Wedderburn [1974. Quasi-likelihood functions, generalized linear models, and the Gauss–Newton

method. Biometrika 61, 439–447] proposed estimating regression parameters based on a quasi-likelihood function

requiring only the relationship between the mean and variance. We extend quasi-likelihood to situations in which there

exists vague prior information on the mean parameters. It is shown when data are exponential family with quadratic

variance functions, maximum a posteriori inference under a conjugate prior relies solely on two moments of the data and

the prior distribution. This result suggests a Bayesian analog of quasi-likelihood for which only two moments of the data

and two moments of the prior need be specified.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let Y be distributed according to F ¼ F ð�jyÞ, which belongs to a one-parameter exponential family
given by

dF ðyjyÞ ¼ f ðyjyÞ ¼ hðyÞ expfyy� cðyÞg, (1)

where y is the natural parameter and cðyÞ is the cumulant function, from which the central moments of Y can
be calculated, in particular c0ðyÞ ¼ EðY Þ ¼ m and c00ðyÞ ¼ VarðY Þ ¼ V ðmÞ, where the primes denote
differentiation with respect to y. It is well known that for members of the exponential family, the score
equations for maximum likelihood estimation rely solely on the first two moments,

qlðyÞ
qm
¼

qm
qy

� ��1
½y� c0ðyÞ�

( )
¼ fV ðmÞ�1ðy� mÞg ¼ 0.
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This observation prompted Wedderburn (1974) to propose quasi-score equations, which require only
specification of the mean and variance function,

qK

qm
¼

y� m
V ðmÞ

¼ 0; V ðmÞ40. (2)

He notes that K has properties similar to those of a log-likelihood function and is, in fact, a log-likelihood
when Y belongs to an exponential family. We propose a similar set of equations for maximum quasi-posterior
estimation when there is vague prior information about the mean parameter, m. By analogy, define

qQ

qm
¼

z� m
V ðmÞ

; V ðmÞ40. (3)

It will be shown that for suitably chosen z, Q has properties similar to those of a log-posterior.

2. Conjugate analysis for exponential families

Diaconis and Ylvisaker (1979) characterize a proper conjugate prior for the natural parameter of an
exponential family,

pðyjs;mÞ / expfsy�mcðyÞg; y 2 Y; m 2 Rþ; s 2 Om, (4)

where O is the support of the mean parameter, m, and Om ¼ fs : ðs=mÞ 2 Og. It is assumed that pð�js;mÞ is a
continuous, proper density on Y for all pairs ðs;mÞ 2 ðOm � RþÞ. Since there exists a one-to-one
correspondence between y 2 Y and m 2 O, the prior distribution pðyÞ induces a prior distribution p�ð�Þ on m,

p�ðmjs;mÞ / expfsyðmÞ �mcðyðmÞÞg
qm
qy

����
����
�1

; y 2 Y; m 2 Rþ; s 2 Om. (5)

In general, p� is not conjugate to the likelihood (1). However, Consonni and Veronese (1992) demonstrate that
when Y has a quadratic variance function (QVF), V ðmÞ ¼ am2 þ bmþ c, qm=qy / expfbyðmÞ þ 2acðyðmÞÞg, and
therefore p�ðmÞ is also conjugate. Morris (1982) characterizes QVF exponential families, and shows this class
of distributions to be quite broad, encompassing, among others, the normal, poisson and binomial
distributions.

Diaconis and Ylvisaker (1979) show that for conjugate priors of the form (4), the prior mean of m is s=m.
Their proof relies on the fact that

R
Y p0ðyÞdy ¼ 0. For Y belonging to a QVF exponential family, Morris

(1983) shows

Ep½hðmÞðm� ðs=mÞÞ� ¼
1

m
Ep½h

0
ðmÞV ðmÞ�

for hðmÞ with continuous first derivative h0ðmÞ. Setting hðmÞ ¼ ½m� ðs=mÞ�, VarpðmÞ ¼ V ðs=mÞ=ðm� aÞ, resulting
in an expression for the prior variance. Thus, when Y follows a QVF exponential family, any combination of
prior mean ðl 2 OÞ and variance ðt2 2 RþÞ can be achieved by selecting m ¼ aþ V ðlÞ=t2 and s ¼ ml.

Since pð�Þ is conjugate to F, closed form expressions for the prior mean and variance imply the existence of
closed form expressions for the same posterior quantities. Consider a simple random sample Y 1;Y 2; . . . ;Y n

from a QVF exponential family whose realizations are y1; y2; . . . ; yn, respectively. Then letting y denote the
arithmetic mean of the observations, the posterior distribution of y can be written, trivially, as
pðyjs;m; y1; . . . ; ynÞ / expfðsþ nyÞy� ðmþ nÞcðyÞg, which is maximized as a function of m when

q
qm

log pðyjs;m; y1; . . . ; ynÞ ¼
X qm

qy

� ��1
s

n
þ yi

� �
�

m

n
þ 1

� �
c0ðyÞ

h i( )

¼
mþ n

n

� �
V ðmÞ�1

X
fðzi � mÞg ¼ 0 ð6Þ

and is proportional to (3) with zi ¼ ðsþ nyiÞ=ðmþ nÞ. Maximizing (6) requires only knowledge of the first two
moments of the data, m and V ðmÞ, and the first two moments of the prior, which are known functions of the
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hyperparameters s and m. Note that unlike its quasi-likelihood analog, (3) does not have expectation zero
(with respect to either the conditional distribution of Y given m or the posterior of m given Y).

Jackson et al. (1970) show that for exponential families, the conjugate prior is least favorable with respect to
quadratic loss among all priors for a specified mean and variance. Thus, the resulting posterior mean is the
Bayes rule and, therefore, minimax under squared error loss. Therefore, using the posterior distribution of y as
the objective function of m is appealing since it shrinks the data toward the posterior mean of m. Maximizing
the posterior distribution of m directly, by updating (5), shrinks toward the posterior mode.
3. Application to generalized linear models

In this section, we extend the conjugate analysis of the previous section to the weighted generalized linear
model (WGLM) framework in which the mean parameters of the observations are functions of known
covariates. To this end, suppose Y ¼ ðY 1; . . . ;Y nÞ

T are independent, but no longer identically distributed, and
for each i 2 1; 2; . . . ; n, let

f ðyijyi; kiÞ ¼ ½hðyiÞ exp yiyi � cðyiÞ
� �

�ki ¼ f ðyijyiÞ
ki ,

where gðmÞ ¼ gðc0ðyÞÞ ¼ Xb ¼ Z for a known monotonic function, gð�Þ, and k1; k2; . . . ; kn are known
weights associated with the observations y1; y2; . . . ; yn, respectively. Often the weights are taken to be
k1 ¼ k2 ¼ � � � ¼ kn ¼ 1, however, this is not necessary.

In the generalized linear model framework, a natural extension of the conjugate prior (4) is one which places
an independent prior (depending on si and mi) on each yi and views their product as a function of the
regression parameters b,

pðbjs;mÞ ¼
Yn

i¼1

expfsiyiðbÞ �micðyiðbÞÞg; y 2 Yn; m 2 Rn
þ; s 2 On

m. (7)

Because (7) is conjugate to the exponential family, the hyperparameters can be chosen to achieve certain
coarse characteristics. Since m can be interpreted as a prior precision, large values of m cause (7) to be
concentrated about the prior mode while small ones result in a more diffuse set of prior beliefs. Further, for
each term in the product m and s are chosen to satisfy EðmiÞ ¼ si=mi and VarðmiÞ ¼ V ðsi=miÞ=ðmi � aÞ, where
V ðmÞ ¼ am2 þ bmþ c is the QVF for yi. Furthermore, certain cases—notably V ðmÞ ¼ c (corresponding to the
normal distribution)—terms in (7) are symmetric, though in general they are not. Because (7) is least favorable
(Jackson et al., 1970), the Bayes estimate is minimax, and, therefore, (7) is a conservative choice when only two
prior moments are known.

Chen and Ibrahim (2003) propose a similar prior where m1 ¼ m2 ¼ � � � ¼ mn. The Chen–Ibrahim prior is
appropriate when the prior confidence in the mean response is roughly constant for all values of the
covariates. By allowing for separate mi, however, (7) can accommodate situations when there is more certainty
for some regions in the design space than others. The log-posterior distribution of y (viewed as an objective
function of b) is maximized when

q
qb

log pðyðbÞjs;m; y; kÞ ¼
q
qb

X
log pðyiðbÞjsi;mi; yi; kiÞ

¼
X qmi

qb
qmi

qyi

� 	�1 q
qyi

log pðyiðbÞjsi;mi; yi; kiÞ

¼
X

dT
i v�1i ðmi þ kiÞ

si þ yi

mi þ ki

� mi

� �
¼
X

dT
i v�1i wi zi � mi


 �
¼ DTV�1W ðz� mÞ ¼ 0, ð8Þ

where di ¼ qmi=qb, vi ¼ V ðmiÞ ¼ VarðyiÞ, wi ¼ ðmi þ kiÞ and zi ¼ ðsi þ yiÞ=ðmi þ kiÞ. When expressed in matrix
form, D ¼ ½qm=qb� is a matrix of derivatives of the means with respect to the model parameters, V ¼ CovðY Þ is
a diagonal covariance matrix and W ¼ diagfwig is a diagonal weight matrix.
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The posterior score equations (8) resemble Wedderburn’s quasi-score equations (2)—the difference being
that the stochastic elements are the means m rather than the data y. Consequently, posterior maximization
requires knowledge of only the first two moments of the data and the prior. Note that when the data are, in
fact, i.i.d. mi ¼ b0 and (8) is a scalar multiple of (3).

4. Quasi-posterior analysis

We have shown that for exponential family data with QVF, the posterior distribution resulting from
updating a conjugate prior on the natural parameter can be maximized with knowledge of only the first two
moments of the data and of the prior. This suggests an extension to quasi-likelihood estimation when there
exists vague prior information of the mean parameters (in the form of a prior mean and variance). Analogous
to standard quasi-likelihood methods, mean parameters associated with non-diagonal covariance structures
can still be estimated, realizing, though, that the choice of non-diagonal V matrix may not correspond to a
proper likelihood-prior structure. This is to be expected as quasi-likelihood based on an arbitrary non-
diagonal covariance matrix does not necessarily correspond to a proper likelihood.

Quasi-posterior maximization proceeds via Newton’s method. Define q log pðyjs;m; y; kÞ=qb ¼ XðbÞ ¼ 0 as
estimating equations for b. Then given a current estimate of b, say bðrÞ, an iterative update satisfies
bðrþ1Þ ¼ bðrÞ � ½X0ðbðrÞÞ��1XðbðrÞÞ, where X0ðbÞ ¼ �DTV�1WD. Note that the posterior distribution of y (viewed
as a function of b) is functionally identical to the likelihood of a WGLM with data ðs=m; yÞ and weights ðm; kÞ.
Therefore, the maximum quasi-posterior estimate ~b behaves as would a maximum likelihood estimate for the
equivalent WGLM. Thus, the same asymptotic arguments apply and

pðyð ~bÞjs;m; y; kÞ ! Npðb; ðDTV�1WDÞ�1Þ. (9)

Unlike many situations, the effect of the prior distribution does not necessarily vanish as n!1. This
potential arises because each new observation coincides with a mean parameter on which a prior distribution
may be placed. Thus, the information contained in the prior can increase with that of the sample. This can be
remedied by limiting the total prior precision—for example, by constraining

P
mi. For fixed

P
mi and

ki ¼ 1 8i, W converges to the identity matrix and the limiting variance–covariance matrix in (9) is the familiar
ðDTV�1DÞ�1.

5. Example

Prentice (1976) examines mortality of adult flour beetles in the five hours following exposure to varying
doses of gaseous carbon disulfide (originally in Bliss, 1935). Dosages are in units of log10 CS2, and raw data are
given in Table 1. Though Prentice investigates the influence of the link function, for ease of exposition we use
the complementary log–log (which accounts for the asymmetry observed by Prentice) and differs
insignificantly from his best fit.

Because the binomial model depends on only one parameter (the success probability, m) the variance is
uniquely determined by this mean parameter. Often, however, observed variance differs from the prescribed
model. If Y i denotes the number of beetles killed at dosage level i, a natural choice of weights, k, is the number
of insects exposed at each level. Absent overdispersion Y i is a binomial random variable with size ki

and success probability mi. To allow for potential extra-binomial variation, an overdispersed binomial
Please cite this article as: David H. Annis, A note on quasi-likelihood for exponential families, Statistics & Probability Letters (2006),
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Table 1

Mortality of adult flour beetles after five hours exposure to gaseous CS2

Dosage 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.8610 1.8839

Insects 59 60 62 56 63 59 62 60

Killed 6 13 18 28 52 53 61 60
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quasi-likelihood is specified:

EðY ijyi; kiÞ ¼ ki

eyi

1þ eyi
¼ kimi; VarðY ijyi; kiÞ ¼ fki

eyi

ð1þ eyi Þ
2
¼ V ðmiÞ ¼ fkimið1� miÞ.

Interestingly, a dispersion parameter of f ¼ 0:5 (underdispersion relative to the binomial model) is consistent
with these data, suggesting some degree of negative correlation between beetles subject to the same dosages.

It is reasonable to assume that the particular dosages used in the experiment were chosen to coincide with all
levels of mortality. This is borne out by the data, as small numbers of beetles die (roughly 10%) at the lowest
dosage while nearly all die at the high dosage.

By allowing different mi, the prior precision can vary with the covariate. Furthermore, letting ki ¼ 0 and
mi40 allows specification of prior information about the response associated with covariates not present in
the data. In particular, since a flour beetle may have a lifespan of two years, a beetle is unlikely to die during a
five-hour experiment (in the absence of toxins). Letting l0 ¼ s0=m0 � 0 implies the prior estimate of the
mortality when the dosage is zero is virtually nil. Likewise, for a large enough dosage, say 3, virtually all
beetles exposed would die. This suggests l3 ¼ s3=m3 � 1. For moderate values, one might assume that the
probability of death is increasing in dosage and that the mortality rates corresponding to these particular
dosages are linear. Thus l1:6907 ¼ ð1� 0:5Þ=8; l1:7242 ¼ ð2� 0:5Þ=8; . . . ; l1:8839 ¼ ð8� 0:5Þ=8 are plausible. The
form of (8) suggests interpreting mi as the equivalent weight or sample size corresponding to the prior
confidence in li. For instance, m0 ¼ 20 implies the confidence in the prior belief l0 ¼ 0 is equivalent to having
observed a sample of 20 beetles of which none were killed. For the interior design points m1:6907 ¼ m1:7242 ¼

� � � ¼ m1:8839 ¼ 4 implies the confidence in the assumed linearity is equal to what it would be had we observed
the same pattern for samples of four beetles at each dosage level. Choosing four hypothetical observations for
each of the eight dosages ensures that the total prior confidence ð4� 8 ¼ 32Þ is roughly half of the observed
sample size for any particular dosage ð� 60Þ. Finally, since there may be more confidence in the prior mean
when the dosage is 3 than when it is between 1.69 and 1.88 but less than when it is 0, m3 ¼ 10 indicates the
belief is about as strong as if there had been a sample of 10 beetles at this dosage, all of which died. For
subsequent comparison, this set of prior beliefs will be referred to as ‘‘linear.’’

Another equally reasonable prior belief is approximate non-informativeness over the range of experimental
dosages. Specifically, one might assume the same behavior for the extreme doses but l1:6907 ¼ 0:5;
l1:7242 ¼ 0:5; . . . ; l1:8839 ¼ 0:5. Here, we may specify a prior variance of t2 ¼ 1

16
so a Wald-type prior

confidence interval for the mortality, l� 2t is ð0; 1Þ. Together f ¼ 0:5 and t2 ¼ 1
16

require
m1:6907 ¼ m1:7242 ¼ � � � ¼ m1:8839 ¼ 3:5. For subsequent comparison, this set of prior beliefs will be referred
to as ‘‘flat.’’

Elicitation of prior information from experts hinges on specifying only a mean and an approximate sample
size which indirectly expresses their estimate of the prior variance. Of course, in the case where the prior mean
and variance can be elicited directly, mi and si are immediate consequences of these specifications. Table 2
gives the two proposed choices of quasi-priors (linear and flat) and compares fits of the maximum quasi-
likelihood and quasi-posterior analyses. A plot of estimated mortality curves is given in Fig. 1. Observed
empirical mortalities for each dosage are marked using ‘‘þ’’ symbols, and implied quasi-prior mortality curves
are given for each set of assumptions.
Please cite this article as: David H. Annis, A note on quasi-likelihood for exponential families, Statistics & Probability Letters (2006),
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Table 2

Comparison of fitted values of number of beetles killed at each dosage for maximum quasi-likelihood (QL) and quasi-posterior (QP) for

two different quasi-priors

Dosage 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.8610 1.8839

Insects (ni) 59 60 62 56 63 59 62 60

Killed ðniyi�Þ 6 13 18 28 52 53 61 60

QL 5.59 11.28 20.95 30.37 47.78 54.14 61.11 59.95

QP (linear) 5.93 11.56 20.87 29.68 46.41 52.99 60.60 59.87

QP (flat) 6.74 12.58 21.83 30.07 46.09 52.34 60.15 59.76

dx.doi.org/10.1016/j.spl.2006.08.011
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Fig. 1. Comparison of fitted values and prior beliefs for maximum quasi-likelihood (QL) and quasi-posterior (QP) methods.
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The results suggest that when the mi are small relative to the sample size, analysis is robust to choice of the
prior beliefs. Even if the prior beliefs are patently false, provided

P
mi=

P
ki ! 0, the effect of the prior is

abated, allowing the true relationship to emerge. In this sense, the proposed method may be preferable to
explicitly constrained quasi-likelihood estimation (Heyde and Morton, 1993) in some cases.
6. Conclusion

In many areas of applied statistics it is sufficient to consider only two moments. Even in many Bayesian
contexts, the posterior mean and variance (or estimates thereof, in the case of Markov chain Monte Carlo
methods) are given as summary measures in lieu of a full posterior distribution. This is especially true of
estimating values for model coefficients (as compared with population parameters) where the ultimate goal is
the model’s predictive output, not quantiles for the model’s coefficients. In such cases, prior information can
still be incorporated using only two moments rather than a complete Bayesian specification.

Specifically, when the data belong to an exponential family with QVF, conjugate analysis yields posterior
estimates which rely on only the first two moments of the data and the prior. This leads to a Bayesian analog
to quasi-likelihood estimation, appropriate when complete specification of the likelihood and prior are
infeasible.

As is expected, the ability to calculate these quasi-posterior estimates easily and without a completely
specified model comes at a price. Since this is not a fully Bayesian procedure, additional quantities, such as
posterior probabilities and credible sets cannot be determined directly.
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