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Abstract

The ranking and selection problem has been well-studied in the case of continuous responses. In this paper, we address the
situation in which continuous responses are replaced by discrete orderings. When individuals in the population provide exhaustive
rank-orderings of the alternatives, two common decision rules are the majority rule and the rank-sum method. In the former case,
the alternative receiving the most first-place votes is declared superior, while in the latter, the alternative with the smallest rank-sum
is deemed the best. Both the Pitman efficiencies and the lower bounds on Bahadur efficiencies of the majority rule relative to the
rank-sum method are derived, assuming that the rank data are generated from either the Plackett–Luce or the translative strengths
models. In addition, finite sample properties of the two methods are compared with the maximum likelihood approach through
simulation studies. Our results suggest two things. First, when it is substantially more difficult to obtain a complete rank-ordering
than simply the top choice, the majority rule performs adequately and efforts would be better spent asking many voters to provide top
choice rather than fewer voters to provide complete orderings. Second, the rank-sum rule compares favorably to, and is substantially
more robust than, the maximum likelihood approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The selection and ranking problem has been extensively studied since the 1950s, including pioneering works of
Bechhofer (1954) and Gupta (1956). That these problems have been studied in such detail points to their wide-spread
relevance to many applied problems. In many analyses, the observed responses (on which ranking and selection are
based) are recorded on a continuous scale. In this paper, we address the situation in which continuous responses are
replaced by their corresponding discrete rank-orders. In this case, suppose a committee of size n is charged with
choosing the best among m potential alternatives. To this end, each voter submits an exhaustive rank-ordering of the
alternatives, with ties prohibited (i.e., the ranking is strict). There are many potential ways to determine a winner in
such a circumstance. For example, the alternative receiving the most first-place votes may be chosen. Such a system is
commonly referred to as the majority (MJ) rule and is in wide use. On the other hand, when the number of alternatives,
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m, is large, the rank-sum (RS) method may be preferable. This procedure selects the alternative that has the smallest
rank sum over all votes. (Low ranks are considered preferable to higher ones—i.e., first-place corresponds to the best
alternative, while mth-place corresponds to the worst).

Throughout, we assume that each of the alternatives possesses an inherent desirability or appeal, and that these
determine how likely a particular alternative is to be preferred to another (or a group of others). In this paper, we
investigate the asymptotic efficiency of the MJ rule relative to the RS method in determining the correct winner (i.e.,
the alternative whose desirability is largest), first under the Plackett–Luce model (Luce, 1959; Plackett, 1975) and
then under the translative strengths model (Stern, 1990; Marden, 1995).

We derive two criteria to quantify asymptotic efficiency. The first is a Pitman (1948) type asymptotic efficiency which
measures the asymptotic ratio of sample sizes required to achieve equal limiting power against the same sequence of
alternative strengths whose differences tend to zero. The second measure is a Bahadur (1971) type efficiency, namely,
the limiting ratio of sample sizes such that the probability of selecting the best alternative tends to 1 at the same rate,
for any fixed alternative strengths.

The remainder of the paper is organized as follows. Section 2 introduces the Plackett–Luce and translative strengths
models. Sections 3 and 4 derive the Pitman efficiencies and the lower bounds on Bahadur efficiencies of the MJ rule
relative to the RS method first under the Plackett–Luce model and then assuming a translative strengths formulation.
Section 5 presents results of a series of simulations comparing the aforementioned approaches for various values of n
(voting committee size) and m (alternatives under consideration). A discussion of main results is given in Section 6.
Appendix A states a few properties of the Plackett–Luce model. Longer proofs are left for Appendix B, and Appendix
C derives quantities related to Pitman efficiency for some common translative strengths models.

2. Modeling rank data

Let �(·) denote a permutation of the integers {1, 2, . . . , m} which corresponds to a rank-ordering of the alternatives.
In particular, �(r) = s denotes alternative s receiving rank r. The complete rank-ordering is expressed as �(1) →
�(2) → · · · → �(m), indicating that the alternative receiving the first-place vote, �(1), is preferred to the alternative
receiving the second-place vote, �(2), and so forth. Implicit in this notation is the idea of transitivity of an individual’s
preference, namely that together i → j and j → k are sufficient to guarantee i → k.

The n voters generate their rank-orderings as follows. Let � = (�1, �2, . . . , �m)′ ∈ Rm+ denote the desirabilities of
alternatives. Without loss of generality, we assume that the m alternatives are labeled according to their desirability
(�1 ��2 � · · · ��m) throughout. Suppose Yj = (Y1,j , Y2,j , . . . , Ym,j )

′, j = 1, . . . , n are i.i.d. random vectors taking
values in Rm and consisting of independent components distributed according to P�1

, P�2
, . . . , P�m

, respectively. The
data we observe are orderings �j =�(Yj ), where � is a measurable mapping fromRm to �, the set of all m! permutations
of alternatives.

If P�i
is the exponential distribution with rate �i (mean 1/�i) and � is given by the increasing order of the Yi,j ’s (that

is, �j = (i1, i2, . . . , im) if and only if Yi1,j < Yi2,j < · · · < Yim,j ), then the ordering vectors follow the Plackett–Luce
model (Luce, 1959; Plackett, 1975), which is perhaps the most common characterization of permutation probabilities.
This model, denoted by PL(�), assumes that each voter independently submits a ranking of all alternatives, and the
probability assigned to a particular ordering �, is

P�[�(1) → �(2) → · · · → �(m)] =
m∏

i=1

��(i)

��(i) + · · · + ��(m)

. (1)

It is easy to verify that P�[�] = Pc�[�] for any constant c > 0. In other words, the probability of the ordering is solely
dependent on the relative (rather than absolute) desirability of an alternative. To ensure a unique solution, we always
assume

∑m
i=1 �i = 1 for this model. Our motivation of the PL(�) model is not unique. Indeed, Stern (1990) shows

that this model can be obtained in many different ways. In addition, the Plackett–Luce model possesses an appealing
internal consistency property. Furthermore, it satisfies Luce’s choice axiom and has a connection to the proportional
hazard model (Cox, 1972). More details are given in Appendix A.

Another class of models for rank data involves a location-family with possibly different location parameters
(Daniel, 1950; Marden, 1995). In this case, P�1

, P�2
, . . . , P�m

have cumulative distribution functions
F(y −�1), F (y −�2), . . . , F (y −�m) and � is a one-to-one mapping given by the decreasing order of the Yi,j ’s, that is,
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�j =(i1, i2, . . . , im) if and only if Yi1,j > Yi2,j > · · · > Yim,j . This class of models is quite broad, encompassing, among
others, the normal, logistic, exponential and uniform distributions. We refer to these models, denoted by TS(�, F ), as
transitive strengths models to reflect that the distributions governing the permutations follow a base distribution F and
differ only by translation determined by �.

3. Asymptotic efficiency under Plackett–Luce model

3.1. Pitman asymptotic relative efficiency

In the decision context, determining the correct choice (i.e., alternative 1, whose desirability exceeds all others’) is
analogous to rejecting a null hypothesis assuming equality of alternatives in favor of a hypothesis that alternative 1 is the
best among its peers. Therefore, one measure of effectiveness of a decision rule is the power of the procedure. Clearly,
as the sample sizes tend to infinity, both the MJ rule and the RS method are capable of detecting increasingly smaller
differences between alternatives. Pitman relative efficiency (PRE) measures test performance against local hypotheses
(i.e., those which are very “close” to the null in some sense). Specifically, it is the ratio of sample sizes required to
achieve a fixed power level against a sequence of hypotheses approaching to the null.

Before deriving the asymptotic efficiencies of the MJ rule relative to the RS method, we present results concerning the
limiting behavior of the number of first-place votes and the rank-sums when rank-orderings follow the Plackett–Luce
model. Let �s = (�s,1, �s,2, . . . , �s,m)′ be a sequence of desirability parameters satisfying

∑m
i=1 �s,i = 1, and define

�s = (�s,2, . . . , �s,m)′ such that �s,i = �s,1 − �s,i and �s = (�s,2, . . . , �s,m)′ where �s,i = (�s,1 − �s,i )
∑m

k=1 {�s,k/[(�s,1 +
�s,k)(�s,i + �s,k)]}. Suppose we observe ns independent votes governed by PL(�s). Let Ws = (Ws,2, Ws,3, . . . , Ws,m)′
be the (m−1)-vector whose entries contain the differences in first-place votes earned by alternative 1 and alternatives 2
through m, respectively. Furthermore, define Ds = (Ds,2, Ds,3, . . . , Ds,m)′ as the (m − 1)-vectorwhose entries contain
the differences in rank-sums assigned to alternatives 2 through m, respectively, and alternative 1. Then the differences
in first-place votes, Ws , and rank sums, Ds , have limiting multivariate normal distributions given by Lemma 1.

Lemma 1. Suppose lims→∞ ns = ∞ and there exist positive constants �i , 2� i�m such that lims→∞ bs�s,i = �i

for a fixed sequence bs → ∞, then, as s → ∞, we have: (a) n
−1/2
s (Ws − ns�s) → N(0, (1/m)	), and (b) n

−1/2
s

(Ds − ns�s) → N(0, ((m(m + 1))/12)	), where

	 =

⎛
⎜⎜⎝

2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2

⎞
⎟⎟⎠ . (2)

A proof is provided in Appendix B. Using Lemma 1, we are ready to prove the following theorem.

Theorem 1. Let nMJ
s , nRS

s be the sample sizes needed to achieve a given power under the Plackett–Luce model PL(�s)

for the MJ rule and the RS method, respectively. Then, the Pitman relative efficiency (PRE) of the procedures is
lims→∞ (nRS

s /nMJ
s ) = 4(m + 1)/3m2, where m is the number of alternatives.

Proof. For any given power 
 > (1/m) of identifying the correct choice, let t > 0 be the number such that
P(Zi � t�i , 2� i�m) = 
, where (Z2, . . . , Zm)′ ∼ N(0, 	) and 	 is defined in Eq. (2). Such t must be unique
because this probability increases monotonically from 1/m to 1, as t goes from 0 to ∞.

With a voting committee of size ns , the MJ rule selects the correct alternative precisely when the difference in
first-place votes between alternatives 1 and i, Ws,i , is positive for all 2� i�m. Note that

P(Ws,i > 0, 2� i�m) = P
[
(−Ws,i + ns�s,i )

√
m/ns − √

mns�s,i < 0, 2� i�m
]

= P
[
(−Ws,i + ns�s,i )

√
m/ns + (t�i − √

mns�s,i

)
< t�i , 2� i�m

]
. (3)

Now, by Lemma 1, (−Ws + ns�s)
√

m/ns → N(0, 	), so when this probability is 
, we have nMJ
s = t2b2

s /m + o(b2
s ).
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The RS method selects the correct alternative precisely when Ds,i is positive for all 2� i�m. In particular, this
probability is given by

P(Ds,i > 0, 2� i�m) = P

[
(−Ds,i + ns�s,i )

√
12

m(m + 1)ns

−
√

12ns

m(m + 1)
�s,i < 0 ∀i

]

= P

[
(−Ds,i + ns�s,i )

√
12

m(m + 1)ns

+
(

t�i −
√

12ns

m(m + 1)
�s,i

)
< t�i ∀i

]
. (4)

It is easy to check that lims→∞ bs�s,i = m2�i/4. Also, (−Ds + ns�s)
√

12/m(m + 1)ns → N(0, 	) by Lemma 1.
These facts imply that when this probability is 
, we have nRS

s = ((4(m + 1))/3m3)t2b2
s + o(b2

s ). Comparing the two,
we see that lims→∞(nRS

s /nMJ
s ) = (4(m + 1))/3m2, which completes the proof. �

3.2. Bahadur asymptotic relative efficiency

While Pitman efficiency measures relative sample sizes required to achieve a fixed power against an arbitrarily small
deviation from the null, the Bahadur type efficiency measures, for a fixed vector of desirabilities � = (�1, �2, . . . , �m)′,
the limiting ratio of sample sizes such that the power associated with selecting the correct alternative will converge to
1 at the same rate. Though perhaps more natural, the Bahadur efficiency is much more difficult to compute explicitly,
and therefore we give a lower bound on its value. A fundamental result on which the remaining arguments rely is given
by Chernoff (1952) and stated below.

Theorem 2 (Chernoff, 1952). Let M(t) be the moment generating function (m.g.f.) of a random variable X, and
define f (a) = sup{at − log M(t) : t �0 and M(t) < ∞}. Suppose X1, X2, . . . are independent and identically dis-
tributed on [−∞, ∞) with m.g.f. M(t). Then if an → a ∈ (−∞, ∞) as n → ∞ such that P(X > a) > 0, then
limn→∞ n−1 log P(

∑n
k=1 Xk/n�an) = −f (a).

Let W
(j)
i be the difference in first-place votes cast by voter j between alternative 1 and alternative i. Since the m.g.f.

of −W
(j)
i is MW(t) = E[e−tW

(j)
i ] = e−t�1 + et�i + (1 − �1 − �i ), it follows that −f (0) = inf[log MW(t)] = log[1 −

(
√

�1−√
�i )

2]. Therefore, by Chernoff’s Theorem, n−1 log P(−∑n
j=1 W

(j)
i �0) → log[1−(

√
�1−√

�i )
2]. Hence, the

probability that alternative i has more first-place votes than alternative 1 is P(
∑n

j=1W
(j)
i �0)=O{[1−(

√
�1−√

�i )
2]n},

which is of the highest order when i = 2. In summary, we have the following Theorem.

Theorem 3. Under the Plackett–Luce model PL(�), the MJ rule selects the correct alternative with probability
1 − O{[1 − (

√
�1 − √

�2)
2]n}, as n → ∞.

For the rank-sum method, we let D(j)
i be the difference in rank-sums assigned by voter j to alternative i and alternative

1. In this case, a closed form for the m.g.f. of −D
(j)
i is unwieldy. However, for t �0, MD(t)=E[e−tD

(j)
i ]�P(D

(j)
i < 0)=

P(Y1,j > Yi,j ) = �i/(�i + �1). In fact, a stricter lower bound is given by

MD(t)�P(Y1,j > Yi,j )e
t + P(Y1,j < Yi,j )e

−(m−1)t = �i

�i + �1
et + �1

�i + �1
e−(m−1)t

�m(m − 1)1/m−1
(

�i

�i + �1

)1−1/m( �1

�i + �1

)1/m

.

Thus, by Chernoff’s Theorem,

lim
n→∞ n−1 log P

⎛
⎝−

n∑
j=1

D
(j)
i �0

⎞
⎠ � log

[
m(m − 1)1/m−1

(
�i

�i + �1

)1−1/m( �1

�i + �1

)1/m
]

.
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Hence, the probability that alternative i has smaller rank sum than alternative 1 is at least of order [m(m − 1)1/m−1

(�i/(�i + �1))
1−1/m(�1/(�i + �1))

1/m]n, which is of the highest order when i = 2. Thus the probability of selecting
the best alternative using the rank-sum method converges to 1 slower than 1 − O{[m(m − 1)1/m−1(�2/(�2 + �1))

1−1/m

(�1/(�2 + �1))
1/m]n}. Combining this result with Theorem 3 yields the following lower-bound for

Bahadur asymptotic efficiency.

Theorem 4. Under the Plackett–Luce model PL(�), the Bahadur relative efficiency (BRE) of the MJ rule to RS method
satisfies

BRE� log
[
1 − (√�1 − √

�2
)2]/log

[
m(m − 1)1/m−1

(
�2

�2 + �1

)1−1/m( �1

�2 + �1

)1/m
]

. (5)

Note that the power of choosing the best alternative converges to 1 exponentially fast for both decision rules, and
when m is large, BRE is in the order of 1/m. Unfortunately, when �1 ≈ �2, the lower bound given in Eq. (5) is overly
conservative and therefore of little practical use.

4. Asymptotic efficiency under translative strengths model

4.1. Pitman asymptotic relative efficiency

Let �s be a sequence of desirabilities satisfying lims→∞ bs(�s,1 − �s,i ) = �i for a fixed sequence bs → ∞, where
�i , 2� i�m are positive constants. Under the translative strengths model TS(�s , F ), we observe ns rank-orderings of
the m alternatives. We assume that lims→∞ ns = ∞. Similar to Section 3.1, we define �s = (�s,1 − �s,2, . . . , �s,1 −
�s,m)′ as the vector of desirability differences between alternative 1 and alternatives 2 through m, respectively; Ws =
(Ws,2, Ws,3, . . . , Ws,m)′ as the vector whose entries contain the differences in first-place votes earned by alternative 1
and other alternatives; and Ds =(Ds,2, Ds,3, . . . , Ds,m)′ as the vector whose entries contain the differences in rank-sums
assigned to alternatives 2 through m and alternative 1. The following lemma gives their limiting multivariate normal
distributions under the TS(�s , F ) model. (Compare, for example, to the asymptotic distributions under the PL(�s)

model given by Lemma 1).

Lemma 2. Under the preceding assumptions, if f (y)=F ′(y), then as s → ∞: (a) n
−1/2
s (Ws −ns�sm

∫
f 2Fm−2) →

N(0, (1/m)	), and (b) n
−1/2
s (Ds − ns�sm

∫
f 2) → N(0, ((m(m + 1))/12)	), where 	 is given in Eq. (2).

A proof of the lemma is provided in Appendix B. Therefore, following similar arguments as given in the proof of
Theorem 1, we can show that the sample sizes needed to achieve a given power are nMJ

s = (1/(m3[∫ f 2Fm−2]2))t2b2
s +

o(b2
s ) for the MJ rule and nRS

s = ((m + 1)/12m[∫ f 2]2)t2b2
s + o(b2

s ) for the RS method, respectively.
Combining the above results yields the following theorem concerning Pitman asymptotic relative efficiency for

translative strengths models.

Theorem 5. If nMJ
s and nRS

s are the sample sizes needed to achieve a given power under the translative strengths model
TS(�s , F ) for the MJ rule and the RS method, respectively, then lims→∞ (nRS

s /nMJ
s ) = ((m + 1)m2[∫ f 2Fm−2]2)/

12([∫ f 2]2).

Derivations of
∫

f 2Fm−2 are provided in Appendix C for selected translative strengths models. Table 1 gives Pitman
relative efficiencies. Except for the Uniform distribution, all other models considered herein have PRE less than one.

4.2. Bahadur asymptotic relative efficiency

In this section, we deal with a fixed vector of desirabilities �=(�1, �2, . . . , �m)′. We assume that, associated with the n
i.i.d. votes, there are i.i.d. unobserved random vectors Yj = (Y1,j , Y2,j , . . . , Ym,j )

′, 1�j �n, with
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Table 1
Pitman relative efficiency for selected distributions

Distribution Pre(MJ, RS)

Uniform
(m + 1)m2

12(m − 1)2

Logistic
3

m + 1

Exponential
4(m + 1)

3(m − 1)2

[
1 − 1

2m−1

]2

Normal (m = 3)
3

4

Normal (m = 4)
20

3

[
arctan(

√
2)

�

]2

≈ 0.62

Normal (m = 5)
25

2

[
6 arctan(

√
2) − �

4�

]2

≈ 0.53

independent components with distributions F(y − �1), F (y − �2), . . . , F (y − �m). Define the probabilities ui and vi

as follows:

ui = P(Yi,j > Yk,j ∀k �= i) =
∫

f (y − �i )
∏
k �=1

F(y − �k) =
∫

f (y)
∏
k �=i

F (y + �i − �k),

vi = P(Yi,j > Y1,j ) =
∫

f (y)F (y + �i − �1).

Now, consistent with the notation established in Section 3.2, let W
(j)
i be the difference in first-place votes cast by

voter j between alternative 1 and alternative i, and D
(j)
i be the difference in rank-sums assigned by voter j to alternative

i and alternative 1. Then, MW(t) = E[e−tW
(j)
i ] = e−t u1 + et ui + (1 − u1 − ui), and

MD(t) = E[e−tD
(j)
i ]�P(Yi,j > Y1,j )e

t + P(Yi,j < Y1,j )e
−(m−1)t = vie

t + (1 − vi)e
−(m−1)t

�m(m − 1)1/m−1v
1−1/m
i (1 − vi)

1/m.

Therefore, by Chernoff’s Theorem, P(
∑n

j=1 W
(j)
i �0) = O{[1 − (

√
u1 − √

ui)
2]n}, which implies that the MJ rule

selects the correct alternative with probability 1−O{[1−(
√

u1 −√
u2)

2]n}, as n → ∞. For the RS method, application

of Chernoff’s Theorem shows P(−∑n
j=1 D

(j)
i �0) is at least of order [m(m − 1)1/m−1v

1−1/m
i (1 − vi)

1/m]n, and is of
the highest order when i = 2. Thus the probability of selecting the best alternative using the RS method converges to 1
slower than 1 − O{[m(m − 1)1/m−1v

1−1/m
2 (1 − v2)

1/m]n}. Hence, we have the following theorem.

Theorem 6. Under the translative strengths model TS(�s , F ), the Bahadur efficiency of the MJ rule relative to RS
method is bounded from below by

log
[
1 − (

√
u1 − √

u2)
2
]
/ log[m(m − 1)1/m−1v

1−1/m
2 (1 − v2)

1/m]. (6)

5. Simulation results

In this section, we report results from two simulation studies. Our first study compares the probabilities of choosing
the correct alternative under the Plackett–Luce model using both the MJ rule and RS method. Also included are results
based on the maximum likelihood estimates (MLE), which selects the alternative with the largest corresponding point
estimate of desirability. More specifically, the MLE of the desirability parameters (�̂) maximizes

∏n
j=1 P�(�j ) as defined
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Fig. 1. Power comparisons for MJ, RS and MLE under Plackett–Luce model (n = 200). The horizontal axis index gives 100 randomly simulated
desirability configurations with �1 = 1 and �i ∼ Uniform(0,1) for i = 2, 3, . . . , m, sorted by the power of the MLE method. When the size of voting
committee is enlarged by 1/PRE, the efficiency-adjusted majority rule (MJ2) has power slightly larger than RS and MLE methods.

in Eq. (1), and can be computed using the MM algorithm of Hunter (2004), which is guaranteed to converge to the unique
maximum likelihood estimator under mild conditions. Fig. 1 presents the power results from the Plackett–Luce model
with a voting committee of size n = 200. The four panels correspond to m = 3, 5, 10 and 15 competing alternatives,
respectively. Because closed-form power calculations are intractable, the power associated with each decision rule
is approximated based on 2000 simulations for each random draw of �. In each plot, the horizontal axis index gives
100 randomly simulated desirability configurations sorted such that they are increasing in the power of the MLE
approach. The vertical axis gives the probability of a correct selection (i.e., choosing the most deserving candidate).
For comparison, the plots also include the probability of a correct selection using MJ2, the efficiency-adjusted MJ rule
evaluated with n∗ =n/PRE voters. The figure shows that for all values of m considered, the RS method and MLE-based
method result in approximately equal probability of a correct decision. The MJ rule performs worse than either the RS
or MLE method. The MJ2 rule (using n∗ votes) always has probability of correct selection slightly larger than those
corresponding to the RS and MLE methods. In addition, our simulation studies indicate that the difference between
MJ2 and RS methods become smaller as the sample size n increases, which is expected as n∗ is based on asymptotic
considerations.

The second study compares the MJ, RS, and MLE methods under the translative strength models. Both Fig. 2 (m=3)

and Fig. 3 (m = 5) compare the probability of a correct selection for four common distributions: uniform, logistic,
exponential and normal. Each panel displays the results of 100 randomly simulated desirability configurations (again
sorted so that the power of the MLE-based approach is increasing), with n = 20 and n∗ = n/PRE. In this study, the
MLE is intentionally misspecified and evaluated under the Plackett–Luce model. In many cases, the MLE approach is
worse than even the MJ rule when the translative strengths model is misspecified.
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Fig. 2. Power comparisons among MJ, RS and MLE under translative strengths model; the size of voting committee n=20 and number of alternative
m = 3. The horizontal axis index gives 100 randomly simulated strength (location parameter) configurations (sorted): �1 = � and �i = ui�, where
�2 is the variance of the f distribution and ui ∼ Uniform(0, 1) for i = 2, 3, . . . , m. MJ2 is the efficiency-adjusted majority rule using n∗ = n/PRE
votes.

6. Conclusions

In many applications, a panel selects and ranks many alternatives. We investigate a variant of the problem where,
in lieu of continuous responses, data consist of discrete orderings of the alternatives under consideration. As such,
the discrete case can be thought of as a censored-data version of the original decision problem. For two classes of
data-generating models (Plackett–Luce and translative strengths), we derived both the Pitman efficiency and lower
bounds on the Bahadur efficiency of the MJ rule relative to the RS method.

The case where there are only two alternatives is trivial since the two decision rules are equivalent. However, as
the number of alternatives, m, increases the rank-sum rule makes more use of the data at hand and is more efficient
than the majority rule. Interestingly, when there are three competing alternatives, the Pitman relative efficiency of the
uniform, logistic, exponential and normal translative strengths models are identical (PRE = 3

4 ). These results follow
immediately from Table 1. By contrast, when m = 3 and the rank-orderings follow a Plackett–Luce model, PRE = 16

27 .
These results suggest that the power of the rank-sum method can be reached by the majority rule if the sample size is
increased to n∗ = n/PRE. Therefore, when it is substantially more difficult to obtain a complete rank-ordering than an
additional partial-ordering, the majority rule performs adequately and efforts would be better spent asking many voters
to provide top choice rather than fewer voters to provide complete orderings.

For comparison purposes, the decision rule based on maximum likelihood estimates was also given. In all cases, the
presumed underlying model was the Plackett–Luce because in reality a true model is never known. Furthermore, this
encompasses both a best-case (true model specified correctly) and worst-case (wrong model family chosen) scenario
which allows for investigation into the MLE’s robustness. Simulation studies suggest that the RS method compares
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Fig. 3. Power comparisons among MJ, RS and MLE under translative strengths model (n = 20 and m = 5). The horizontal axis index is the same as
in Fig. 2. Once again, MJ2 is the efficiency-adjusted majority rule using n∗ = n/PRE votes.

favorably to the maximum likelihood estimate in both cases. The MLE method is not robust in the sense that it
becomes worse than even the majority rule when the translative strengths model is misspecified as the Plackett–Luce
model. This lack of robustness is not surprising since the MLE is parametric while the MJ rule and RS procedure are
non-parametric.

In the preceding arguments, no voter manipulation was allowed. That is, all members of the population submitted
genuine rank-orderings reflecting their preferences of the alternatives. In a real situation, however, a manipulative
voter may wish to increase the chances of his preferred alternative being chosen by submitting a vote on which other
desirable alternatives are ranked much lower than their merits would suggest. In such a case, the preceding robustness
and efficiency arguments do not apply, and one may wish to simply use the majority rule to prevent manipulation. A
potential area of future work is to determine the relative amount of manipulative votes the RS procedure can withstand
before it loses its efficiency over the MJ rule.
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Appendix A. Properties of the Plackett–Luce model

In the case of two competing alternatives, denoted i and j, Bradley and Terry (1952) posit that the probability i is
preferred to j is given by pi,j =�i/(�i +�j ).Aside from its simplicity, the Bradley–Terry formulation enjoys wide-spread
use owing, in part, to the variety of situations from which it may be derived. While not stated as such, the Bradley–Terry
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formulation assigns probabilities to (degenerate) permutations. In situations where m > 2 items are to be ranked, the
Plackett–Luce model is the natural extension of the Bradley–Terry model, assigning probabilities to all m! orderings
of alternatives.

An appealing property of the Plackett–Luce model is its internal consistency. (This property is sometimes referred to
as indifference to irrelevant alternatives.) More formally, consider a proper subset B ⊂ {1, 2, . . . , m} whose cardinality
is mb < m and whose elements are {b1, b2, . . . , bmb

}. If PB(i) is the probability that alternative i is ranked highest
among those contained in B, then under the Plackett–Luce model,

P [b1 → b2 → · · · → bmb
] =

mb∏
i=1

�bi

�bi
+ · · · + �mb

, and consequently PB(i) = �i∑
j∈B �j

. (7)

In other words, this probability only depends on the relative merits of the alternatives in B and is unaffected by the
remaining alternatives not in B. Another attractive property of the model is the variety of ways in which it may be
derived, some of which follow.

Luce’s choice axiom: Consider a situation in which every alternative has a positive probability of being preferred to
any other alternative in a pairwise comparison (i.e., �i > 0; ∀i). If A = {a1, a2, . . . , ama } is a subset of B consisting of
ma elements and PB(A) =∑i∈A PB(i) is the probability that a member of A is ranked highest among those in B, then
Luce’s choice axiom (Luce, 1959) states

PB(i) = PB(A)PA(i) ∀i ∈ A ⊆ B. (8)

This condition can be interpreted using a two-stage argument as follows. First, if i ∈ A ⊆ B is to be preferred to all
other alternatives in B, then it is a weaker condition to require that at least some member of A is the most preferred
alternative in B. Subsequently, if this alternative is to be i, then i must also be most preferred among those in A. Luce
showed that the above axiom is equivalent to Eq. (1) for positive-valued parameters �.

Plackett’s hierarchical approach: Plackett (1975) presents a general framework for modeling permutations motivated
by considering the results of a horse race. Such results may be viewed in a sequential fashion by determining which
horse finishes the race first, which of the remaining horses finishes second, and so forth. This paradigm led him to
propose a hierarchical structure for which the probabilities of each remaining horse finishing next (given those which
have not already finished) are modeled. Plackett’s first-stage logistic model, which includes no interactions, results in
permutation probabilities that coincide with Luce’s.

Although Luce (1959) and Plackett (1975) arrive at the model given by Eq. (1) from different axioms, theirs are not
the only motivations. Stern (1990) develops a model based on independent Gamma waiting times. In his formulation
the winner is the first competitor to accumulate a fixed number, r, of points. The second-place finisher is the next
to accumulate r, etc. When r = 1 and the waiting times are exponentially distributed, the permutation probabilities
follow Eq. (1). Finally, we present a connection between the Plackett–Luce model and the proportional hazards model
(Cox, 1972).

Relationship to proportional hazards model: In survival analysis, the hazards is defined as h(y) = f (y)/[1 − F(y)],
where f (y) is the density of survival times and S(y) = [1 − F(y)] is the survival function (i.e., the probability that
the survival time exceeds y). A common, simplifying assumption for parametric survival modeling is to assume that
hazards are proportional and that the covariates determine their ratio, i.e., hi(y) = h0(y)�i for some baseline hazard
h0(·). In such a situation, the following theorem shows that relative order of survival times follow a Plackett–Luce
model.

Theorem 7. Suppose Y1, Y2, . . . , Ym are independent survival times and follow a proportional hazards model with
hazard functions hi(y) = h0(y)�i , i = 1, . . . , m, then the rank-orderings of the survival times follows a Plackett–Luce
formulation, P [Y1 < Y2 < · · · < Ym] =∏m

i=1(�i/(�i + �i+1 + · · · + �m)).

The proof is straightforward and omitted.
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Appendix B. Proofs of lemmas

Proof of Lemma 1. Let W(j)
s = (W

(j)
s,2 , W

(j)
s,3 , . . . , W

(j)
s,m)′ represent the differences in first-place votes awarded by

voter j to alternative 1 and alternatives 2 through m, respectively. Then W
(j)
s,i is a difference of indicator functions,

W
(j)
s,i = I {�j (1) = 1} − I {�j (1) = i} and has expectation E(W

(j)
s,i ) = �s,1 − �s,i (since

∑m
i=1 �s,i = 1). Furthermore,

E(W
(j)
s,i W

(j)

s,i′ ) = E
[
(I {�j (1) = 1} − I {�j (1) = i})(I {�j (1) = 1} − I {�j (1) = i′})})]

=
{

�s,1 + �s,i if i = i′,
�s,1 if i �= i′.

Hence, we have E(W(j)
s ) = �s and lims→∞ Cov(W(j)

s ) = (1/m)	. Finally, since Ws =∑ns

j=1 W(j)
s is the sum of ns

independent and identically distributed random variables with finite moments, the central limit theorem for a double
array guarantees that n

−1/2
s (Ws − ns�s) → N(0, (1/m)	).

Turning to rank-sums, define D(j)
s = (D

(j)
s,2 , D

(j)
s,3 , . . . , D

(j)
s,m)′ as the rank differences between alternatives 2 through

m and alternative 1 by voter j. Note that the rank difference may be expressed as

D
(j)
s,i =

m∑
k=1

[I (Yk,j < Yi,j ) − I (Yk,j < Y1,j )] =
m∑

k=1

[I (Yk,j > Y1,j ) − I (Yk,j > Yi,j )],

which has expectation

E(D
(j)
s,i ) =

m∑
k=1

[
�s,1

�s,1 + �s,k

− �s,i

�s,i + �s,k

]
= (�s,1 − �s,i )

m∑
k=1

�s,k

(�s,1 + �s,k)(�s,i + �s,k)
.

In addition,

E(D
(j)
s,i D

(j)

s,i′) =
m∑

k=1

m∑
l=1

E([I (Yk,j > Y1,j ) − I (Yk,j > Yi,j )][I (Yl,j > Y1,j ) − I (Yl,j > Yi′,j )]).

Therefore, E(D(j)
s ) = �s and lims→∞ Cov(D(j)

s ) = ((m(m + 1))/12)	. Once again, since Ds =∑ns

j=1 D(j)
s is the sum

of independent and identically distributed random variables with finite moments, the central limit theorem for a double
array guarantees that n

−1/2
s (Ds − ns�s) → N(0, ((m(m + 1))/12)	). �

Proof of Lemma 2. We define W(j)
s and D(j)

s same as in the Proof of Lemma 1. Then, under the translative strengths
model TS(�s , F ), Ws = ∑ns

j=1 W(j)
s and Ds = ∑ns

j=1D(j)
s remain as sum of independent and identically distributed

random variables with finite moments.
Next, if we let f (y) = F ′(y), then the probability of alternative k being preferred to alternative i by a voter under

model TS(�s , F ) satisfies

lim
s→∞ bs

[
P�s (Yk,j > Yi,j ) − 1

2

]
= lim

s→∞ bs

[∫
F(y − �s,i )f (y − �s,k) − 1

2

]

= lim
s→∞ bs

[∫
F(y + �s,k − �s,i )f (y) −

∫
F(y)f (y)

]

= lim
s→∞ bs(�s,k − �s,i )

∫
f (y)2 = (�i − �k)

∫
f (y)2.
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Consequently, the rank difference between alternative i and alternative 1 assigned by voter j under model TS(�s , F )

satisfies

lim
s→∞ bsE�s [D(j)

s,i ] = lim
s→∞ bsE�s

⎧⎨
⎩
∑
k �=i

[
I (Yk,j > Yi,j ) − 1

2

]
−
∑
k �=1

[
I (Yk,j > Y1,j ) − 1

2

]⎫⎬
⎭

= lim
s→∞ bs

⎡
⎣∑

k �=i

(�s,k − �s,i ) −
∑
k �=1

(�s,k − �s,1)

⎤
⎦∫ f (y)2 = m�i

∫
f 2. (9)

On the other hand, for the majority rule, the probability that 1 is the most preferred alternative by voter j satisfies

lim
s→∞ bs

[
P�s (Y1,j > Yi,j ∀i �= 1) − 1

m

]
= lim

s→∞ bs

⎡
⎣∫ f (y − �s,1)

∏
i �=1

F(y − �s,i ) − 1

m

⎤
⎦

= lim
s→∞ bs

⎡
⎣∫ f (y)

∏
i �=1

F(y + �s,1 − �s,i ) −
∫

f (y)F (y)m−1

⎤
⎦

=
∑
i �=1

�i

∫
f (y)2F(y)m−2.

Hence, the difference in first place votes awarded to alternative 1 and alternative i by voter j satisfies

lim
s→∞ bsE�s [W(j)

s,i ] = lim
s→∞ bsE�s

{[
I (Y1,j > Yk,j ∀k �= 1) − 1

m

]
−
[
I (Yi,j > Yk,j ∀k �= i) − 1

m

]}

= lim
s→∞ bs

⎡
⎣∑

k �=1

(�s,1 − �s,k) −
∑
k �=i

(�s,i − �s,k)

⎤
⎦∫ f (x)2F(x)m−2

= m�i

∫
f 2Fm−2. (10)

Thus, we have lims→∞ [E(Ws) − ns�sm
∫

f 2Fm−2] = 0 and lims→∞ [E(Ds) − ns�sm
∫

f 2] = 0. Furthermore,

as s → ∞, Cov(W(j)
s ) and Cov(D(j)

s ) converge to the same null covariance matrices as in the Plackett–Luce model.
Therefore, Lemma 2 follows from the central limit theorem for a double array. �

Appendix C.
∫

f Fm−2 for common translative strengths models

First, for the logistic distribution, f (y) = e−y/(1 + e−y)2 and F(y) = 1/(1 + e−y). Therefore,

∫
f (y)2F(y)m−2 =

∫
e−2y(1 + e−y)−m−2 dy = 1

(m + 1)m
.

Next, for the exponential distribution, we have f (y) = e−|y|/2 and F(y) = ey/2 when y < 0, and F(y) = 1 − e−y/2
when y�0. Thus,

∫
f (y)2F(y)m−2 =

∫ 0

−∞
1

2m
emy dy +

∫ ∞

0

1

4
e−2y[1 − e−y/2]m−2 dy = 1

m(m − 1)

[
1 − 1

2m−1

]
.
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Lastly, for the normal distribution, following Bose and Gupta (1959), we define In(a)= ∫ [�(ay)]ne−y2
. Then, their

results imply that
∫

2 = I0(1)/(2�) = 1/(2
√

�), and

∫
2�m−2 = Im−2(1)/(2�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

4
√

�
, m = 3,

arctan(
√

2)

2�3/2 , m = 4,

6 arctan(
√

2) − �

8�3/2 , m = 5.
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